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Some preliminary results presented in two previous papers are expanded upon. 
In the first it was shown that the Maxwell equations are equivalent to a nonlinear 
Dirac-like spinor equation. In the present paper it is shown that, in that formalism, 
the Dirac equation for the free electron is susceptible to a puzzling reinterpreta- 
tion. In fact, it is shown that the Dirac equation is equivalent to the Maxwell 
equations for an electromagnetic field generated by two currents: one electric 
in nature and one, magnetic-monopolar. The elaboration of this result brings a 
nonlinear generalization of Maxwell's equations, as well as a nonlinear Dirac-like 
equation fully equivalent to them, from which both the electron mass as well as 
the magnetic monopole mass appear to be fully electromagnetic in nature, and 
the magnetic monopole to be tachyonic. The corresponding nonlinear Dirac 
equation reduces, under suitable approximations, to the ordinary Dirac equation 
for the free electron. 

I. INTRODUCTION 

Some time ago the author presented two papers (Campolattaro 1980a, b) 
(hereafter referred to as I and If) as the output of a research program 
which, due to severe conditions, had to be postponed. The relief of  those 
circumstances has allowed the pursuit of  this research and some results are 
presented here. 

In I and I[ it was shown that for any electromagnetic field tensor F ~'~ 
it is possible to find a spinor ~ such that one has 

F ~'~ = q t S ~  (I) 

where ~t is the Dirac conjugate of the spinor �9 and S ~'" is the spin operator 
defined by 

S - ~ r  r (2) 
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where 

VD.V~] = �89 _ y~y~) (3) 

and the y's are the Dirac matrices satisfying the anticommutation condition 

y~y~ + y~y~' = 2r/~'~ (4) 

with rfl "~ the Minkowski metric tensor given by 

0 1 2 3 

~  0 0 0 

i / i  -1 0 0 (5) ~7~= 2 0 -1  0 
3 0 0 -1  

and the Dirac matrices adopted are those of  the Dirac representation, with 

y s=  yOyl yZy3 (6) 

and 

y .*=  yOy~yO (7) 

In this representation the dual tensor (the Einstein sum convention is 
adopted throughout) 

~ F ~  1 ~ ~'o-~-~ =~e r~  (8) 

where e ~'~=~ is the Ricci pseudotensor with entry +1 if the parity of the 
permutation/zvo,~- of the indices 0, 1, 2, 3 is even, and -1  if odd, and entry 
zero if two or more indices are equal, assumes the form 

*F ~ = if' ySS'~"xtt (9) 

and the Maxwellequations read (a comma followed by an index represents 
the partial derivative with respect to the variable with that index) 

( ~ S " ~ W ) , .  = j~  (10) 

and 

(fit ySS~'~W),~. = 0 (11) 

The electromagnetic field tensor involves then the spinor operator. 
Moreover, the duality rotation (Rainich, 1925; Misner and Wheeler, 1957) 
by the complexion a, namely 

P~'~ = F ~ cos a + * F  ~ sin a (12) 
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is equivalent to a Touschek-Nishijima (Touschek, 1957; Nishijima, 1957) 
transformation for the spinor �9 to the spinor ~ '  given by 

~I t ' =  e z'5"/2x]? " (13) 

with 

and 

e r'~ = cos a + y5 sin a (14) 

with the properties 

p being the positive square root of 

p2 = ( ~ ) 2  + (~y5~)2  (17) 

and the Touschek-Nishij ima transformation is the simplest of the chiral 
transformations (Coleman and Glashow, 1962). 

In this spinor representation a vector and a pseudovector appear quite 
naturally, namely the vector ~ y ~ ' ~  and the pseudovector ~ysy~, which 
are orthogonal, i.e., 

(~y~xP)(~ysy~) = 0 (18) 

and with the same moduli p, i.e., 

( f f . y . ~ ) ( ~ r ~ )  = p2 (19) 

( ~ y s y ~ T ) ( ~ y s y z ~ )  = p2 (20) 

which can then be normalized by 

sc~, = 1 (ff.y~,~) (21) 
P 

n~ , = 1 ( ~ y S y . ~ )  (22) 
P 

~:~'r/. = ~'sr = 0 (23) 

sc~'sr = ~/%% - 1 (24) 

cos a - (15) 
p 

~ 7 5 ~  sin a = (16) 
P 
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Moreover, the two spinor Maxwell equations (10) and (11) were shown 
to be equivalent to a single nonlinear first-order equation for the spinor ~ ,  
namely 

ey5~ 
y " ~ , .  = - i v " - -  {I . , (~ , .~)  - j~  - ySIm (~, .  ysxIt)}~ (25) 

P 

These results, namely the connection between the electromagnetic field 
tensor and the spin operator, as well as that of the duality rotation with a 
chirality transformation and the similarity of the spinor equivalent equation 
of the Maxwell equations with the classical Dirac equation for the electron, 
have titillated my imagination to the point of questioning if the relationship 
between the classical electromagnetic theory and relativistic quantum 
mechanics was not merely formal but more profound. 

2. THE GENERALIZED MAXWELL EQUATIONS 

As Maxwell himself did, I have ignored the possibility of existence of 
magnetic monopoles. However, the existence of monopoles makes the 
electromagnetic field theory so symmetric then over and over one likes to 
think about the reality of magnetic monopoles. Let us therefore assume that 
together with an electric current j , ,  there exists also a magnetic monopole 
current g~,. In this spinor formalism the Maxwell equations (10) and (11) 
read 

and 

( ~ S ' ~ ) , .  = j~  [equation (10)] 

( ~ y S S ' ~ ) , .  = g~ (26) 

and it is easily shown that the spinor equation (25), in the presence of 
magnetic monopoles, reads 

e ~,S o~ 

y"W.. = - i y "  {Ira (~.~.*) -J~ - Ys[Im (ff,~. Ys*) - g~.]}W (27) 
P 

3. TWO GAUGE CONDITIONS 

At this point let me point out that in the presented spinor representation 
of the Maxwell equations, the six real components of the electric and 
magnetic fields have been replaced by a spinor ~ ,  which exhibits eight real 
functions in its components, so that two of these parameters are not needed. 
One is therefore free to impose two conditions on the spinor xlt so as to 
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reduce the necessary parameters to the six required for the description of 
the electromagnetic field. Let us choose the two gauge conditions: 

I~[q' ~ ' I ' ]  = 0 (28) 

I~[~tys[S]~] = 0 (29) 

where [] represents the ordinary D'Alembertian. 
The reason for this choice resides in the fact that, as is readily seen, 

the vector I.~(~ .q~) and the pseudovector .Im(~t ~ys~)  become solenoidal, 
i.e., 

and 

{7/'~Im(ff ~ySXlr)},, = 0 (31) 

where ~ '~ is the Minkowski metric tensor given by (5). This property will 
be used in the next section. 

4. THE PHYSICAL INTERPRETATION OF THE VECTORS 
lm(aP,~q t) AND lm(qt,~ysq W) 

For the physical interpretation of these two vectors, consider equation 
(27), in which these two vectors are neglected, i.e., 

eySa ~ 

37"~ ~ - i7" ~ (Jr - YSg~,) * ~  = 0 (32) 
P 

Equation (32) can be also written identically as follows: 
T5o~ 0 

_ �9 tz 0 0 0 �9 y~xlro e -o - - - ' Y  ----~{I~(q'  ~'I' ) - [ / m ( q % ' I '  )+j~]  
P 

-ys[Im(~~176176176176 (33) 

Because of the two gauge conditions (28) and (29), the vectors Im(~~ '~ 
and -o  ~ o Im(xtr ~y �9 ) can be considered as two conserved currents and thence, 
from equation (27) and its demonstrated equivalence to Maxwell's 
equations, they define an electromagnetic field satisfying the equations 

(~r~176 = r /~l , ,  (~~176 + j  ~ (34) 

and 

�9 ~ I  ~ o  5~o~ (~~ 5S~"~~ m~ ,~y , + g "  (35) 
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On the other hand, since Im(~t~ ~ and Im(~t,~ ~ are conserved, 
we can use the above-mentioned results, which ensure the existence of a 
spinor �9 such that 

-- /J~v 
(qbS ~),~ = - r / ~ I m ( ~ ~  ~ = rig"Ira(C-It~176 (36) 

and 
/ ~ '  - - 0  5 0 - 5 ~ -~'~I ~ , o _ 5 ~ o ~ =  ~ I , . ( ~  y ~ ,~)  (37) 

so that equations (34)and (35) read 

{~~176 + ~S"~dP},. = j "  (38) 

and 

The tensor 

{~'~176 + ~ySS~qb}, V = g~ (39) 

equation (40) gives 

f ~  = F "~ - P"~ (43) 

Thence the neglect in equation (27) of the vectors Im ( ~ )  and/,1 (~t,~ ys~)  
is equivalent to studying not the physical field F "~, but the field f ~ .  This 
tensor P"", defined by equations (36) and (37), is called the "vacuum 
polarization tensor." Here, however, as well as in later sections, the term 
"vacuum polarization" is used loosely for analogic reasons and for sake of 
economy of terminology. Whether it has something to do with what is 
ordinarily understood by vacuum polarization, say, e.g., in relationship with 
the work of Heisenberg and Euler (1936), is a question whose answer is 
left to further investigations. Thus, considering equation (27) without the 
terms Im(ff, ,~) and Im(~ ~ys~),  i.e., equation (32), is equivalent, in other 
terms, to neglecting the vacuum polarization effect. I call the tensor field 
f ~  the "bare field," 

5. A R E I N T E R P R E T A T I O N  OF THE D I R A C  E Q U A T I O N  FOR 
THE FREE E L E C T R O N  

Let us consider the Dirac equation for the free electron, i.e., 

(y~0~ + i m ) ~  = 0 (44) 

~ ~ 1 7 6  ~S~'~qb = F z" (40) 

is therefore the Maxwell electromagnetic field associated with the currents 
j ~" and g", By putting for the sake of simplicity 

~ ~ 1 7 6  =f"~  (41) 

~S~"Op = P ~ "  (42) 
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By multiplying equation (44) on the left by ff'y v one has 

~7~3 ,~0~  + imCP'y~'~ = 0 (45) 

From equations (2) and (3), equation (45) reads 

2iCP S"~'qr g + ~ C ~ O .  W + im~  3/ '~ = 0 (46) 

By taking the Hermitian conjugate of equation (46), one has 

2iCIr .~S~ - ~7~ (c9 ~ ~ ) ~  + im~  T ~  = 0 (47) 

and by adding equations (46) and (47), one obtains, for the antisymmetry 
of S ~ ,  

(CtrS'~),~, = r l ' ~ I m ( ~  ~,) + m ~ ' y " ~  (48) 

Similarly, by multiplying equation (44) on the left by �9 3,5 ~/~ and by repeating 
the steps followed in the previous lines, one has 

( ~ 3 , 5 S ~ ) , ~  = r l~Im(~ys~,~ , )  (49) 

Equations (48) and (49) are completely equivalent to the Dirac equation 
(44). Therefore, one has, by using the results expressed by equations (10) 
and (26), that the Dirac equation is equivalent to the Maxwell equations 
for an electromagnetic field P ~  defined by 

P ~  = ' i 'S~'I  ' (50) 

and thence 

�9 F"~ = ~ 7 5 S ~  (51) 

generated by the two currents 

j ~" = rl"~Im(CIt~,~) + m(qty"~)  (52) 

and 

g" = "q"~Im(~7!~,~) (53) 

the first electronic in nature and the second magnetic monopolar, or simply 
monopolar. The two gauge conditions (28) and (29) are automatically 
satisfied because each of the four components of the Dirae spinor satisfies 
the Klein-Gordon equation and the current m ~ y " ~  is conserved. 

I elaborate this result below. 

6. F U R T H E R  G E N E R A L I Z E D  M A X W E L L  E Q U A T I O N S  

From here on I will study further developments in the bare field 
approximation, and omit the superscript zero for the sake of simplicity and 
without fear of ambiguity. 
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As pointed out in the introduction, in the spinor representation of  
electromagnetism, a vector ~ y " ~  and a pseudovector ~ySy~ .~  come out 
quite naturally; their algebraic properties with respect to the electromagnetic 
field tensor, its dual, and the energy-momentum tensor were shown in II. 
But are they only mathematical entities, deprived of  any physical meaning? 

In I, it was shown that the spinor �9 cannot be a neutrettor, in the 
sense of  Corson (1955); thence these two vectors carry a charge and so 
these vectors are charge currents. However, in general one does not have 
that these two new currents are conserved, so I introduce two real scalars 
m and n and in correspondence a vector m~. and a pseudovector n . ,  both 
real, defined by 

and 

m~ = m ( ~ y .  g r) (54) 

n~ = - i n ( ~ 3 : y g  ~ )  (55) 

so that both m~ and n~ are solenoidal, i.e., 

~" = 0 (56) m p~ 

= 0 (57) n ~  

What happens to these currents? 
Given an electrical current density j~. and a monopole current density 

g . ,  they generate through the field equations (10) and (26) some other 
currents mCIry~'~ and - i n ~ y S y ~ ' q  t which are theh fed back in the field, 
which in turn produces another electromagnetic field and another spinor 
and thence two more currents m ~ y " ~  and -inCI'ySy~'~ and so on ad 
infinitum; at the limit this feedback process gives another generalized spinor 
Maxwell equation which reads 

e ySO~ 

y " ~  = iy ~' - -  {j~ + m~ - yS(g~. + n~)}~ (58) 
P 

for the new electromagnetic field after the feedback of  the two conserved 
currents (54) and (55); equation (58) can be rewritten in the form 

y ~ , ~  = i y ~ _ _  (j~, _ yS g~)~  + iy~, (m~ - yS n~,)qt (59) 
P P 

The second term on the right side can be rewritten, after (54), (55), (21), 
and (22), as follows: 

eySO~ 
iy ~ (m~ - ySn~)~ = im  e - r S ~ y ~ q  t + n e-YS~ ysy~'Th, g r (60) 

P 
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and taking account of (A6) and (A8) of Appendix A, equation (60) reads 

eVSa 
iy" ' ( m . -  ySn.) = ( im + n)XI t (61) 

P 

so that the generalized spinor Maxwell equation (59) reads 

eYS~ 
Y~'~,o = iy" - -  (j~ - ySg.) + i ( m  - in )W (62) 

P 

or 

,)/t~ {0,~ eYSa - i - - ~ -  ( j .  - ySg.)} xIt- i ( m  - i n ) ~  = 0 (63) 

7. MAGNETIC MONOPOLES AS TACHYONS 

The mass term in equation (63), namely m -  in, is a complex number 
whose real term has to be identified with the rest mass of the electron, while 
the imaginary part has to be identified with the rest mass of the magnetic 
monopole. This result indicates that the magnetic monopoles are tachyons 
or superluminal particles. Historically, the idea of superluminal particles 
precedes the theory of relativity (Thomson, 1889; Heaviside, 1892; Des 
Coudres, 1990; Sommerfeld, 1904), as pointed out by Recami and Mignani 
(1974b). In the postrelativity era, Recami and Mignani (1974a) proposed 
the magnetic monopoles as superluminal objects. The same authors exten- 
ded the theory of relativity to handle both bradyons as well as tachyons 
[see Mignani and Recami (1974b) its extensive bibliography], eliminating 
all the paradoxes associated with superluminal objects, legitimizing their 
consideration in nature. In subsequent papers (Mignani and Recami, 1974a, 
1975; Recami and Mignani, 1974b, c, 1976; Corben and Honig, 1975; Corben, 
1975; Recami, 1976, 1987) magnetic monopoles as tachyons were further 
investigated. In the generalized Maxwell equations, both the mass of the 
electron as well as that of the magnetic monopole appear to be fully 
electromagnetic in nature. 

8. THE MASS EQUATIONS 

The masses m and n which appear in equation (40) cannot be arbitrary 
since they have to be such that the conservation conditions (56) and (57) 
are satisfied. 

Due to (54) and (55), these conservation conditions read 

m,~(~r y u * ) +  m( f fy"~ ) , ,  = 0 (64) 
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and 

n . (X~ySy '~ )  + n (~ySy~'~),~. = 0 (65) 

On the other hand, equations (B 10 ) and (B 11 ) of Appendix B hold, together 
with (B9), and thence equations (64) and (65) read 

rn,~,(x~7"~) = 2iprnA.~7 ~ - 2 m n p  cos a (66) 

and 

n,~(~ ys y ~ )  = -2ipnA~,~ ~ - 2imnp sin a (67) 

with A~, given by (B9), i.e., 

A~, = 1 (j~. 

or, equivalently, p being ~ 0, 

and 

sin a -g~, cos a)  (68) 

[ln(m)],~,r ~" +2n cos a = 2iA~,rl ~" 

[ln(n)],~.r/~ +2im sin a = - 2 i A ~  v~ 

From equation (69) one has, in the hypothesis 

cos a ~ 0 

2iA.71 ~" - [ln(m)],.~ :~ / ' /=  
2 cos a 

(69) 

(70) 

(71) 

(72) 

9. THE M A S S  F O R M U L A S  

Fortunately, one does not have to struggle with the mathematical 
intricacies of the mass equations of the previous section in order to determine 
the functional dependence of the masses on the spinor ~ .  In fact, by 
replacing the terms m ~ ( ~ y ~ )  and n , ~ ( ~ y S y ~ ) ,  respectively, with 
- m ( ~ y ~ ) , ~  and - n  (qt y S y ~ ) , ~  from equations (65) and (66), one readily 
has 

i 2iA~ ( ~ y ~ )  - ( ~ y S y ~ ) , ~  
m = (74) 2 ~ y s ~  

i.e., once m is known, n is known algebraically. 
From equations (59) and (57) one has an equation involving only m, i.e., 

{ tln(-m )L r l / L  2 cos. In . j j ,  n 2im sin a = - 2 i A ~  ~ (73) 
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and 

1 2iA~(x~75y~'~) + (x~TJ'~),~, (75) 

These are just the values of m and n as evaluated in Appendix. B. Therefore, 
the values of m and n given by equations (74) and (75) ensure the self- 
consistency of equation (41) and the continuity conditions (57) and (58) 
are automatically satisfied. 

10. DIRAC E Q U A T I O N  FOR THE FREE ELECTRON 

In the case of nonexistence of magnetic monopoles, then both g~, and 
n vanish and equation (64) gives 

y~'o~, - i jr ,  �9 - i m ~  = 0 (76) 
P 

In the absence of free electrical charges, equation (76) reduces to 

% , 0 ~ , ~  - i m q  t = 0 (77) 

In this ease, however, equation (B7) gives 

(ff 'y~*),~ = 0 (78) 

so that the conservation condition (57) is satisfied with m constant and 
equation (77) is the Dirac equation for the free electron. 

However, if magnetic monopoles do exist, in the absence of free charges, 
i.e., j~, = 0 and g~, = 0, m does not need to be constant; in fact, equations 
(74) and (75) reduce to 

m =  2 ffrys~ (79) 

and 

1 v . , I , ) , .  
, i f , .  (80) 

so that equation (63) gives 

3 , ~ 0 ~ , ~  - i ( m  - i n ) q t  = 0 (81) 

which is a Dirac equation, nonlinear, due to the functional dependence on 
of both m and n through equations (79) and (80). Nonlinear Dirac 

equations where indeed the nonlinearity is confined to the mass term have 
recently been studied (Kersten, 1983; Strauss and Vfizquez, 1986; Furlan 
and Raczka, 1986) and some solutions have been found for particular cases 
(R~gnada and Us6n, 1980; Fushchich and Shtelen, 1983; Steeb and Devel, 
1984). 
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II.  CONCLUSIONS 

In this paper it has been shown that some preliminary results (Campol- 
attaro, 1980a, b) can be extended to the point of revealing an intimate 
connection between the celebrated Maxwell equations of classical elec- 
tromagnetism and relativistic quantum mechanics. 

A suitable choice of gauge has allowed us to interpret the two terms 
which appear in the spinor equation equivalent to Maxwell's equations, 
namely I,,(~,~,~) and Im(Xll "ysXIt), as coming from vacuum polarization 
effects. In this paper these vacuum polarization effects have been neglected 
and this approximation has been called the "bare field approximation." In 
this approximation, by a feedback process the Maxwell equations, in their 
spinor representation, have been generalized. The selected choice of gauge 
has allowed us to write a generalized spinor Maxwell equation. With this 
generalization the mass of the electron as well as that of the magnetic 
monopole appears to be fully electromagnetic in nature. The appearance, 
however, of a complex mass term reveals that while electrons are bradyons 
(v < c), the magnetic monopoles are tachyons (v > c), and this is in agree- 
ment with an idea of Recami and Mignani which dates back to 1974. The 
further pursuit of this subject is left to later investigations. The masses, 
however, are not constant, but are functionally dependent on the Maxwell 
spinor. Two mass equations have been written, and the mass functional 
dependence on the spinor �9 has been deduced. The ordinary Dirac equation 
for the free electron has been derived under the simplified conditions of 
the nonexistence of magnetic monopoles and the absence of electric charges. 
However, if the existence of magnetic monopoles is not excluded, the free 
solution, i.e., the one with both j ,  and g~, vanishing, requires both an 
electronic mass as well as a magnetic monopole mass, the latter not 
zero and both not constant, but functionally dependent on the Maxwell 
spinor ~.  This result brings us to the most recent studies of nonlinear 
Dirac equations where the nonlinearity resides, in fact, in the mass term. 

APPENDIX A 

In I, it was shown that given three arbitrary spinors X, r and ~ ,  one 
has 

(2~ ,~) ( ,~  ~,I , )  = (2,~)(4,,~) + ( s  ~5,~,) (A1) 

The identity (A1) can be written as follows: 

)?{y. (~ y ~ ) } ~  = , ~ { ( ~ )  + ys(~ ys~)}~ (A2) 

and since it holds for any spinor X, one has that for any two arbitrary 
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spinors �9 and �9 the following identity holds: 

By taking 
(p=q~ 

(A3) reads 

and for equations (14)-(16) and (21), (A5) gives 

(y"~: )~  = e ~ - ~  

Similarly, by putting 

one has, after (22), 

153 

(A3) 

(A4) 

(A5) 

(A6) 

(I) = ysq t (A7) 

(A8) 

A P P E N D I X  B 

The Dirac conjugate of equation (62) reads 

e-VS~ 
~t,~ y~ = - i V y "  (j~ + ySg.) _ i ( m  - i n ) ~  (B1) 

P 

which, after multiplication on the right by ~ ,  gives 

P P 

- i ( m  - i n ) ( ~ )  (B2) 

Similarly, by multiplying equation (62) on the left by ~ ,  one has 

x~y~qt,. = / j l  (~ty~y5 eVS~W) _ ig~ 1 (ff.y.y5 e r S ~ )  
P P 

+ i ( m  - i n ) ( f f ~ )  (B3) 

and by adding (B2) and (B3), one has 

P 

1 
- i g . -  {~y'~(e~'")ysW} + 2n (~qt) (B4) 

P 
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and 

From equations (14)-(16) one also has 

e vs'~ + e -ySa = 2 cos a (Bs) 

e vS~ - e -yS~ = 2y 5 sin a (B6) 

so that equation (B4) reads 

(CP7~),. = -2i(j .  sin a - g .  cos a ) ~  +2np cos a (B7) 

Similarly one has 

( ~ t y S y ~ ) , ~  = 2i(j~. sin a - g .  cos a)~+2imp sin a (BS) 

For sake of  simplicity, we take 

= 1  (j~, sin a - g ~ ,  cos a )  (B9) A~ 

so that equations (B7) and (B8) read 

( ~ t y ~ ) , ~  = _2ipA~7~. +2np cos a (B10) 

and 

( ~ y s y ~ ) , ~ ,  = 2ipA~, + 2imp sin a (B11) 
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